Persistent astrocyte activation in the fragile X mouse cerebellum
نویسندگان
چکیده
BACKGROUND Fragile X Syndrome, the most common single gene cause of autism, results from loss of the RNA-binding protein FMRP. Although FMRP is highly expressed in neurons, it has also recently been identified in glia. It has been postulated that in the absence of FMRP, abnormal function of non-neuronal cells may contribute to the pathogenesis of the disorder. We previously demonstrated reduced numbers of oligodendrocyte precursor cells and delayed myelination in the cerebellum of fragile X (Fmr1) knockout mice. METHODS We used quantitative western blotting and immunocytochemistry to examine the status of astrocytes and microglia in the cerebellum of Fmr1 mice during development and in adulthood. RESULTS We report increased expression of the astrocyte marker GFAP in the cerebellum of Fmr1 mice starting in the second postnatal week and persisting in to adulthood. At 2 weeks postnatal, expression of Tumor Necrosis Factor Receptor 2 (TNFR2) and Leukemia Inhibitory Factor (LIF) were elevated in the Fmr1 KO cerebellum. In adults, expression of TNFR2 and the glial marker S100β were also elevated in Fmr1 knockouts, but LIF expression was not different from wild-type mice. We found no evidence of microglial activation or neuroinflammation at any age examined. CONCLUSIONS These findings demonstrate an atypical pattern of astrogliosis in the absence of microglial activation in Fmr1 knockout mouse cerebellum. Enhanced TNFR2 and LIF expression in young mice suggests that changes in the expression of astrocytic proteins may be an attempt to compensate for delayed myelination in the developing cerebellum of Fmr1 mice.
منابع مشابه
Astrocyte-Secreted Factors Selectively Alter Neural Stem and Progenitor Cell Proliferation in the Fragile X Mouse
UNLABELLED An increasing body of evidence indicates that astrocytes contribute to the governance and fine tuning of stem and progenitor cell production during brain development. The effect of astrocyte function in cell production in neurodevelopmental disorders is unknown. We used the Neural Colony Forming Cell assay to determine the effect of astrocyte conditioned media (ACM) on the generation...
متن کاملAltered Developmental Expression of the Astrocyte-Secreted Factors Hevin and SPARC in the Fragile X Mouse Model
Astrocyte dysfunction has been indicated in many neurodevelopmental disorders, including Fragile X Syndrome (FXS). FXS is caused by a deficiency in fragile X mental retardation protein (FMRP). FMRP regulates the translation of numerous mRNAs and its loss disturbs the composition of proteins important for dendritic spine and synapse development. Here, we investigated whether the astrocyte-derive...
متن کاملP-206: Gestational Diabetes Increased the Astrocytes Density in Cerebellar Cortex of Rat Offspring
Background: Gestational diabetes mellitus affects 3-5% of all human pregnancy.Studies reported the neurotoxic effect of gestational diabetes on cerebellarand spinal cord in rat offspring. This study was conducted to determine the effect of gestational diabetes on astrocyte density in the cerebellum of rat offspring. Materials and Methods: In this experimental study, 30 Wistar rats dams were ran...
متن کاملCalcium Supplementation Ameliorates Cerebellar Oxidative Stress in Lactational Aluminum-induced Neurotoxicity in Rats
Introduction: The neurotoxic effects of aluminum exposure during the critical period of neurodevelopment have been well documented. This study investigated the known protective effects of calcium supplementation on the cerebellum of juvenile Wistar rats following aluminum-induced neurotoxicity during lactation. Methods: Four groups of juvenile rats were exposed via lactation to distilled water...
متن کاملGABAB receptor upregulates fragile X mental retardation protein expression in neurons
Fragile X mental retardation protein (FMRP) is an RNA-binding protein important for the control of translation and synaptic function. The mutation or silencing of FMRP causes Fragile X syndrome (FXS), which leads to intellectual disability and social impairment. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the mammalian central nervous system, and its metabotropic GABA...
متن کامل